Home
About
Analyze
WEseq data
mRNA data
methylation data
microRNA data
Tools
Download
CGGA data (in-house)
Other data
Help
Contact
Analyse result - microRNA data (survival)
Dataset:
microRNA_array_198
Gene:
hsa-miR-181d
Plot
Plot (Beta)
Data
R Code
If the load is incomplete, please refresh this page.
CGGA.ID PRS.type Histology Grade Gender Age OS Censor Expression CGGA_253 Primary A WHO II Female 37 5159 0 475.7871 CGGA_258 Primary A WHO II Female 61 663 1 -10.71934 CGGA_281 Primary A WHO II Female 36 1236 0 101.3922 CGGA_285 Primary A WHO II Male 30 1576 0 126.2377 CGGA_316 Primary A WHO II Female 30 4682 0 1462.289 CGGA_317 Primary A WHO II Female 42 4681 0 1385.259 CGGA_321 Primary A WHO II Male 42 NA NA 355.4094 CGGA_357 Primary A WHO II Female 37 2518 1 416.0789 CGGA_365 Primary A WHO II Female 32 3593 0 646.6498 CGGA_379 Primary A WHO II Female 39 1077 1 35.58109 CGGA_396 Primary A WHO II Female 49 4576 0 11.33216 CGGA_399 Primary A WHO II Male 36 2663 1 399.6841 CGGA_402 Primary AA WHO III Male 53 4562 0 157.8558 CGGA_407 Primary A WHO II Male 33 4555 0 480.8643 CGGA_433 Primary A WHO II Male 30 NA NA -91.24295 CGGA_434 Primary A WHO II Male 35 4513 0 1493.551 CGGA_447 Primary A WHO II Female 20 4508 0 306.2721 CGGA_459 Primary A WHO II Male 44 3613 0 990.727 CGGA_461 Primary A WHO II Male 36 1266 1 12.36649 CGGA_469 Primary A WHO II Male 30 4464 0 253.5339 CGGA_505 Primary A WHO II Male 36 2994 1 -35.29445 CGGA_522 Primary A WHO II Female 24 3630 0 89.47379 CGGA_542 Primary A WHO II Male 24 NA NA 173.4008 CGGA_544 Primary A WHO II Female 44 4371 0 302.0789 CGGA_548 Primary A WHO II Male 39 NA NA 524.4952 CGGA_552 Primary A WHO II Female 36 4362 0 265.2721 CGGA_590 Primary A WHO II Male 36 4319 0 1546.349 CGGA_592 Primary A WHO II Male 47 4315 0 -24.55196 CGGA_595 Primary A WHO II Female 51 NA NA -3.071275 CGGA_601 Primary A WHO II Male 36 1133 1 2647.852 CGGA_626 Primary A WHO II Male 20 4273 0 130.9802 CGGA_648 Primary A WHO II Female 33 3647 1 435.0575 CGGA_663 Primary A WHO II Female 29 4210 0 554.521 CGGA_673 Primary AA WHO III Male 54 NA NA 307.7828 CGGA_688 Primary A WHO II Male 19 4196 0 1.379368 CGGA_692 Primary AOA WHO III Male 19 NA NA 1270.714 CGGA_708 Primary A WHO II Female 38 4167 0 1358.328 CGGA_711 Primary A WHO II Male 49 1798 0 449.8858 CGGA_712 Primary A WHO II Male 25 NA NA 519.3879 CGGA_718 Primary A WHO II Male 17 4159 0 146.0832 CGGA_736 Primary A WHO II Male 38 1164 1 -5.54767 CGGA_743 Primary A WHO II Male 30 851 1 582.5339 CGGA_746 Primary A WHO II Male 45 332 1 530.0875 CGGA_753 Primary A WHO II Male 24 3217 1 27.3622 CGGA_767 Primary AA WHO III Male 36 1310 1 47.57679 CGGA_770 Primary A WHO II Male 30 1057 0 1046.053 CGGA_776 Primary A WHO II Female 48 4091 0 1827.8 CGGA_781 Recurrent rA WHO II Male 35 4088 0 45.48666 CGGA_792 Primary A WHO II Male 32 816 1 814.903 CGGA_275 Primary O WHO II Female 43 4722 0 109.5596 CGGA_323 Primary O WHO II Female 48 4338 0 149.6412 CGGA_387 Primary O WHO II Female 51 539 1 -31.65067 CGGA_446 Primary O WHO II Female 35 4508 0 12.77851 CGGA_484 Primary O WHO II Female 32 4442 0 14.49954 CGGA_485 Primary O WHO II Male 31 2437 0 -85.91248 CGGA_543 Primary O WHO II Male 43 4371 0 949.9673 CGGA_579 Primary O WHO II Female 42 2125 1 17.59396 CGGA_589 Primary O WHO II Male 33 4320 0 13.51671 CGGA_633 Primary O WHO II Female 56 1812 1 1128.388 CGGA_639 Primary O WHO II Male 47 4256 0 1197.139 CGGA_659 Primary O WHO II Female 50 730 0 -1.551962 CGGA_672 Primary O WHO II Male 22 4215 0 1100.045 CGGA_41 Primary AA WHO III Male 53 94 1 33.02744 CGGA_202 Primary AA WHO III Male 41 NA NA 20.86006 CGGA_247 Primary AA WHO III Male 60 609 1 895.7742 CGGA_249 Primary AA WHO III Male 41 312 1 508.0875 CGGA_331 Primary AA WHO III Female 27 1638 1 900.5381 CGGA_334 Primary AA WHO III Female 35 1450 1 874.2892 CGGA_353 Primary AA WHO III Female 60 516 1 693.0446 CGGA_354 Primary AA WHO III Male 62 180 1 939.0017 CGGA_405 Primary AA WHO III Male 59 497 1 1462.289 CGGA_410 Primary AA WHO III Female 70 1099 1 674.1691 CGGA_412 Primary AA WHO III Female 42 358 1 885.4308 CGGA_476 Primary A WHO II Female 37 936 1 696.5554 CGGA_486 Primary AA WHO III Male 23 424 1 68.28924 CGGA_260 Primary AO WHO III Female 49 567 1 778.1948 CGGA_277 Primary AO WHO III Male 40 4739 0 65.81714 CGGA_314 Recurrent rAO WHO III Male 39 2568 1 440.9159 CGGA_364 Primary AO WHO III Male 32 666 1 1164.628 CGGA_403 Primary AO WHO III Male 43 925 0 839.3279 CGGA_414 Primary AO WHO III Male 28 4541 0 390.0703 CGGA_474 Primary AO WHO III Male NA 2029 0 221.2721 CGGA_481 Primary AO WHO III Female 61 1507 1 1212.165 CGGA_489 Primary AO WHO III Male 31 3804 0 869.5596 CGGA_490 Primary AO WHO III Female 37 3804 0 1128.388 CGGA_508 Primary AO WHO III Female 17 285 1 2291.075 CGGA_558 Primary AO WHO III Male 34 188 0 33.74847 CGGA_598 Primary AO WHO III Female 61 3677 1 1366.903 CGGA_231 Primary AA WHO III Male 60 510 1 900.5381 CGGA_232 Recurrent rAA WHO III Male 28 415 1 104.8515 CGGA_259 Recurrent rAA WHO III Female 26 649 0 1228.568 CGGA_279 Recurrent rAA WHO III Female 49 1314 1 949.9673 CGGA_329 Primary AA WHO III Male 42 419 1 497.2678 CGGA_336 Recurrent rAO WHO III Female 57 2549 1 660.1691 CGGA_351 Primary AA WHO III Female 35 742 1 967.1691 CGGA_352 Primary AA WHO III Male 18 4639 0 874.2892 CGGA_391 Primary AOA WHO III Female 29 2010 1 1106.834 CGGA_393 Primary AOA WHO III Male 65 2190 1 955.6068 CGGA_406 Recurrent rAA WHO III Female 24 90 1 900.5381 CGGA_438 Primary AOA WHO III Male 53 686 1 -20.32879 CGGA_471 Primary AA WHO III Male 45 1373 1 285.933 CGGA_487 Recurrent rGBM WHO IV Male 46 156 1 650.3622 CGGA_492 Recurrent rAA WHO III Male 27 652 0 -6.002606 CGGA_498 Primary AOA WHO III Male 37 356 1 -10.22578 CGGA_513 Primary AA WHO III Female 44 1374 1 885.4308 CGGA_562 Primary AA WHO III Female 62 290 1 1280.13 CGGA_596 Primary AA WHO III Male 60 1618 1 667.4695 CGGA_1 Primary GBM WHO IV Female 43 605 1 508.0875 CGGA_11 Primary GBM WHO IV Female 57 155 1 -104.0284 CGGA_13 Primary GBM WHO IV Male 59 267 1 96.16907 CGGA_24 Primary GBM WHO IV Male 48 387 1 233.3365 CGGA_58 Primary GBM WHO IV Male 60 570 1 188.8643 CGGA_88 Primary GBM WHO IV Male 20 169 1 -53.98544 CGGA_100 Primary GBM WHO IV Male 47 335 1 11.33216 CGGA_102 Primary GBM WHO IV Male 17 214 1 217.8257 CGGA_124 Primary GBM WHO IV Male 53 414 1 -16.30733 CGGA_126 Primary GBM WHO IV Female 50 1177 1 516.5854 CGGA_139 Primary GBM WHO IV Male 59 694 1 -24.55196 CGGA_144 Primary GBM WHO IV Male 54 363 1 258.7871 CGGA_156 Primary GBM WHO IV Male 51 179 1 -32.15282 CGGA_160 Primary OA WHO II Female 29 4982 0 494.6068 CGGA_161 Primary GBM WHO IV Female 35 329 1 27.3622 CGGA_168 Primary GBM WHO IV Male 17 3086 0 234.6583 CGGA_169 Primary GBM WHO IV Male 59 450 1 272.6197 CGGA_172 Primary GBM WHO IV Female 57 462 1 124.1047 CGGA_178 Primary GBM WHO IV Male 38 972 1 -17.11849 CGGA_182 Primary GBM WHO IV Female 47 128 1 227.903 CGGA_188 Primary GBM WHO IV Male 51 397 1 530.0875 CGGA_195 Primary GBM WHO IV Male 48 486 1 -60.16999 CGGA_203 Primary GBM WHO IV Male 40 188 1 548.066 CGGA_205 Primary GBM WHO IV Male 65 292 1 -45.87385 CGGA_210 Primary GBM WHO IV Female 68 300 1 -46.27299 CGGA_214 Primary GBM WHO IV Female 48 193 1 519.3879 CGGA_218 Primary GBM WHO IV Male 12 313 1 539.0446 CGGA_221 Primary GBM WHO IV Male 37 287 1 14.96735 CGGA_222 Primary GBM WHO IV Male 51 520 1 -16.30733 CGGA_225 Primary GBM WHO IV Male 32 1741 1 1093.1 CGGA_238 Primary GBM WHO IV Male 53 275 1 905.8257 CGGA_240 Primary GBM WHO IV Male 54 386 1 864.8815 CGGA_242 Primary GBM WHO IV Male 62 382 1 374.7957 CGGA_255 Primary GBM WHO IV Female 42 591 1 57.49954 CGGA_264 Primary GBM WHO IV Male 54 383 1 456.7184 CGGA_287 Primary GBM WHO IV Female 39 571 1 285.933 CGGA_292 Primary GBM WHO IV Male 37 812 1 650.3622 CGGA_306 Primary GBM WHO IV Male 59 901 1 196.8901 CGGA_308 Primary GBM WHO IV Female 55 823 1 681.5253 CGGA_311 Primary GBM WHO IV Male 40 230 1 717.6154 CGGA_324 Primary GBM WHO IV Male 52 336 1 569.2806 CGGA_335 Primary GBM WHO IV Male 59 385 1 657.1948 CGGA_342 Primary GBM WHO IV Female 49 500 1 486.1776 CGGA_345 Primary GBM WHO IV Female 43 1547 0 755.8901 CGGA_346 Primary GBM WHO IV Male 45 104 1 312.521 CGGA_349 Primary GBM WHO IV Female 49 869 0 311.0017 CGGA_366 Primary GBM WHO IV Male 54 255 1 634.9073 CGGA_370 Primary GBM WHO IV Male 51 338 1 385.9888 CGGA_371 Primary GBM WHO IV Male 42 811 1 530.0875 CGGA_373 Primary GBM WHO IV Female 45 281 1 146.0832 CGGA_375 Primary GBM WHO IV Male 57 657 1 454.1734 CGGA_377 Primary GBM WHO IV Male 17 398 1 367.7399 CGGA_380 Primary GBM WHO IV Male 52 165 1 436.9974 CGGA_401 Primary GBM WHO IV Female 24 168 1 27.3622 CGGA_409 Primary GBM WHO IV Male 63 98 1 424.4566 CGGA_419 Primary GBM WHO IV Male 56 198 1 513.7485 CGGA_436 Primary GBM WHO IV Male 48 955 1 650.3622 CGGA_437 Primary GBM WHO IV Female 54 1025 1 730.6068 CGGA_439 Primary GBM WHO IV Female 33 3813 1 769.4266 CGGA_442 Primary GBM WHO IV Male 62 1555 1 922.0875 CGGA_444 Primary GBM WHO IV Female 70 225 1 536.1433 CGGA_451 Primary GBM WHO IV Male 61 795 1 646.6498 CGGA_454 Primary GBM WHO IV Male 37 412 1 709.6154 CGGA_464 Primary GBM WHO IV Female 39 403 1 657.1948 CGGA_504 Primary GBM WHO IV Female 22 563 1 944.4609 CGGA_512 Primary GBM WHO IV Male 33 4371 0 557.3493 CGGA_525 Primary GBM WHO IV Male 61 138 1 463.8772 CGGA_527 Primary GBM WHO IV Male 33 439 1 1008.959 CGGA_547 Primary GBM WHO IV Male 29 1337 1 1375.916 CGGA_549 Primary GBM WHO IV Female 34 413 1 685.4352 CGGA_557 Primary GBM WHO IV Female 38 257 1 563.4695 CGGA_570 Primary GBM WHO IV Female 60 3602 0 713.3493 CGGA_573 Primary GBM WHO IV Male 35 946 1 554.521 CGGA_575 Primary GBM WHO IV Male 55 551 1 541.9587 CGGA_588 Primary GBM WHO IV Male 58 773 1 557.3493 CGGA_593 Primary GBM WHO IV Male 37 242 1 572.418 CGGA_594 Primary GBM WHO IV Female 27 4318 0 627.7056 CGGA_597 Primary GBM WHO IV Female 31 733 1 869.5596 CGGA_604 Primary GBM WHO IV Male 46 381 1 403.8815 CGGA_606 Primary GBM WHO IV Male 62 325 1 721.4867 CGGA_609 Primary GBM WHO IV Female 44 512 0 725.7957 CGGA_612 Primary GBM WHO IV Male 47 2023 1 864.8815 CGGA_9 Recurrent rGBM WHO IV Male 43 408 1 371.2892 CGGA_81 Recurrent rGBM WHO IV Male 39 551 1 1526.757 CGGA_104 Secondary sGBM WHO IV Male 27 440 0 145.1691 CGGA_220 Secondary sGBM WHO IV Male 34 318 1 638.2249 CGGA_462 Secondary sGBM WHO IV Male 38 361 1 595.2291 CGGA_518 Secondary sGBM WHO IV Male 27 212 1 1315.088 CGGA_545 Recurrent rGBM WHO IV Female 38 555 1 747.727 CGGA_822 Secondary sGBM WHO IV Male 46 2237 1 1654.534 CGGA_D59 Secondary sGBM WHO IV Female 30 NA NA 318.7957
data.file<-"data.txt" gene<-"hsa-miR-181d" ## load R package library(survminer) library(survival) library(ggpubr) library(gridExtra) ## import data dat<-read.table(data.file, sep='\t', head=T) rownames(dat)<-dat$CGGA.ID #head(dat) mat<-dat[!is.na(dat$PRS.type)&(dat$PRS.type=="Primary"|dat$PRS.type=="Recurrent")& !is.na(dat$Grade)& !is.na(dat$OS)& !is.na(dat$Censor),] ### all grade - Primary ### matt<-mat[mat$PRS.type=='Primary',] med.microRNA<-median(matt$Expression) more.med.microRNA.index<-which(matt$Expression>=med.microRNA) less.med.microRNA.index<-which(matt$Expression< med.microRNA) matt$status<-NA matt$status[more.med.microRNA.index]<-paste0('High (',length(more.med.microRNA.index),')') matt$status[less.med.microRNA.index]<-paste0('Low (',length(less.med.microRNA.index),')') s.fit<-survfit(Surv(OS, Censor) ~ status, data = matt) s.diff<-survdiff(Surv(OS, Censor) ~ status, data = matt) sdata.plot1<-ggsurvplot(s.fit, data=matt, pval = TRUE, #conf.int = TRUE, xlab = 'Time (day)', ggtheme = theme_light(), surv.median.line = 'hv', title=paste0("All WHO grade survival (primary glioma)")) ### all grade - Recurrent ### matt<-mat[mat$PRS.type=='Recurrent',] med.microRNA<-median(matt$Expression) more.med.microRNA.index<-which(matt$Expression>=med.microRNA) less.med.microRNA.index<-which(matt$Expression< med.microRNA) matt$status<-NA matt$status[more.med.microRNA.index]<-paste0('High (',length(more.med.microRNA.index),')') matt$status[less.med.microRNA.index]<-paste0('Low (',length(less.med.microRNA.index),')') s.fit<-survfit(Surv(OS, Censor) ~ status, data = matt) s.diff<-survdiff(Surv(OS, Censor) ~ status, data = matt) sdata.plot2<-ggsurvplot(s.fit, data=matt, pval = TRUE, #conf.int = TRUE, xlab = 'Time (day)', ggtheme = theme_light(), surv.median.line = 'hv', title=paste0("All WHO grade survival (recurrent glioma)")) ### WHO grade II - Primary ### matt<-mat[mat$PRS.type=='Primary'&mat$Grade=="WHO II",] med.microRNA<-median(matt$Expression) more.med.microRNA.index<-which(matt$Expression>=med.microRNA) less.med.microRNA.index<-which(matt$Expression< med.microRNA) matt$status<-NA matt$status[more.med.microRNA.index]<-paste0('High (',length(more.med.microRNA.index),')') matt$status[less.med.microRNA.index]<-paste0('Low (',length(less.med.microRNA.index),')') s.fit<-survfit(Surv(OS, Censor) ~ status, data = matt) s.diff<-survdiff(Surv(OS, Censor) ~ status, data = matt) sdata.plot3<-ggsurvplot(s.fit, data=matt, pval = TRUE, #conf.int = TRUE, xlab = 'Time (day)', ggtheme = theme_light(), surv.median.line = 'hv', title=paste0("WHO grade II survival (primary glioma)")) ### WHO grade III - Primary ### matt<-mat[mat$PRS.type=='Primary'&mat$Grade=="WHO III",] med.microRNA<-median(matt$Expression) more.med.microRNA.index<-which(matt$Expression>=med.microRNA) less.med.microRNA.index<-which(matt$Expression< med.microRNA) matt$status<-NA matt$status[more.med.microRNA.index]<-paste0('High (',length(more.med.microRNA.index),')') matt$status[less.med.microRNA.index]<-paste0('Low (',length(less.med.microRNA.index),')') s.fit<-survfit(Surv(OS, Censor) ~ status, data = matt) s.diff<-survdiff(Surv(OS, Censor) ~ status, data = matt) sdata.plot4<-ggsurvplot(s.fit, data=matt, pval = TRUE, #conf.int = TRUE, xlab = 'Time (day)', ggtheme = theme_light(), surv.median.line = 'hv', title=paste0("WHO grade III survival (primary glioma)")) ### WHO grade IV - Primary ### matt<-mat[mat$PRS.type=='Primary'&mat$Grade=="WHO IV",] med.microRNA<-median(matt$Expression) more.med.microRNA.index<-which(matt$Expression>=med.microRNA) less.med.microRNA.index<-which(matt$Expression< med.microRNA) matt$status<-NA matt$status[more.med.microRNA.index]<-paste0('High (',length(more.med.microRNA.index),')') matt$status[less.med.microRNA.index]<-paste0('Low (',length(less.med.microRNA.index),')') s.fit<-survfit(Surv(OS, Censor) ~ status, data = matt) s.diff<-survdiff(Surv(OS, Censor) ~ status, data = matt) sdata.plot5<-ggsurvplot(s.fit, data=matt, pval = TRUE, #conf.int = TRUE, xlab = 'Time (day)', ggtheme = theme_light(), surv.median.line = 'hv', title=paste0("WHO grade IV survival (primary glioma)")) ## output pdf splots <- list() splots[[1]]<-sdata.plot1 splots[[4]]<-sdata.plot2 splots[[2]]<-sdata.plot3 splots[[5]]<-sdata.plot4 splots[[3]]<-sdata.plot5 arrange_ggsurvplots(splots,nrow=3,ncol=2)
Running, Please wait patiently...